K-Beauty Token (KBT)

ofiel o

o2k
re
]
]
~]
[o
=0
_o'_l-
1]l
JH
=
L)
L]
o
In
MH
(11]
oK

Version 1.0 | 20254 18

=

1. Executive Summary

7|2 7%

Hu

— OH
—d

=x}

gm
b

o ® N o 0k~ W N

Lt
| >
U
%o

MH|A 4 A

1. Executive Summary

K-Beauty Token(KBT)2 $t= My o|Z2ta Aol E3tEl ESH|Q! 7|8t 2|9 = AAH

ol
=

L|C}.

CHe of| A
InkZ] Al&H| £|CH 15% 2|/IE, MF MH|A Zol VIP 5iEH
M3io|at sfiel M |X| OIS ke, YR |2, 12 H|O|E QIAOIE

H% oMEL

TAE 8 DX H2, I2A 0 7|3

o
ol

mJ

- VIP S

r
i d|

e

KO

el

KO0

e

0
r

ol
100

Jol

tE LIt

2ol hi7H' 2 2| T

4

-
(e}
o

|4+ (2028)

i (2024)

i

-
(<]
—_

NE: S

ol
Kd

.

ol

oFd
K

a

ol

AE 2

2t &

600~1,0002

500~800

= A= HIE

=X 40%

oF 25%

ot
id]
70

2.2 £ EPI Z7}

wr

H| S

=7t

oF
<H

35%

25%

of

o

20%

XTI} AE, VIP MH|A SA|

10%

Kio

10%

70|

=

al

3. H|=L|

3.1 |HEliA| A=

&ofxt o

kL A

gl E

HF oEL

o3 g of| & H|IS
7zeh EZ el Al 1~2% 40%
MY R Mg Hal/eM - L= Al o)t 30%
Z2|0|Y AMH|A VIP 52 7=, Z2|0|d 7|5 20%
HIO|Ef QIAOIE YotEl AT 2M 2| ZE Tj 10%

4, E3 0|Z O]

4,1 E2 7|2 ™A
a8 Li&
EZ2d K-Beauty Token
HE KBT

Oft
nE
o?.!

1,000,000,000 KBT (10

74, 1)

AxH 18 decimals
HES3 Polygon (ERC-20 =3t

x| 7HX 71F

1 KBT = 1009 (AX

4.2 EZ HIE

s H| S = Hj A E
CICT == 40% 42 KBT 5E7E MEIH aE
IOIE L QIMIEIH 20% 29 KBT 37t O AE 7|4t
&l & 0{=HIO| X 15% 1.59 KBT 670 22|, 2470 HAE
2% #=u|2 15% 1.5 KBT LQA| 2= (HEAD)
EXIX} (Seed) 5% 0.5 KBT 7MY 22T, 12702 HAE
EXIR} (Series A) 5% 0.5 KBT ZA| 10%, LIHX| 1270
4.3 HYE 1=
A& 2N X 2|2 Sa4 MEE
= SILVER GOLD PLATINUM DIAMOND
1002kl ojat 5% 6% 7% 8%
100~5007+H 7% 8% 10% 11%
500~1,0002+ 10% 11% 12% 13%
1,0002H2! O] A 12% 13% 14% 15%
oA S INE
sa 5N MY I|E Nt =S
¥ SILVER 7kl Al - 7|2 ®z
¥ GOLD 50,000 KBT 23] of At £9 MH|A
 PLATINUM 200,000 KBT 53] |4t 33 o, M of|of

@ DIAMOND 500,000 KBT 103 O| At HE HAOX], 2= ¥ O20|=

HLA M2 o[HE

ESSE

2t 25,000 KBT

1270 L RH'

= A HEE +3%

H3I|(HE/A

) o

2zl

iz

&
4.4 E3 NEN
el ne AHEX A8 =2
Age|nt A|&H| ZH| ZoHo| |cf 30%7HX| E2 ZH|
=4 ZiH| gol Mz s %t 20% E2 2|
HEI/&Y 22/8g S REIY 100% E2 ZH 7ts
sto Opd2| x| Mzt 1 KBT = 10 Ot2|X|
T2|0|e VIP AMH|A F2O4 £, I, HAIX|
4.5 EZ 272t HFL|E
A 2%
22t K'Y AZHHIE E2|H =

DE ES AL Hef Al

2008 DIME EE

THEL AHlof 9|Hh Al

o AZRR: ZUE 20Jolo] 20%
X
T

2 <

§7|DEI.(=) =) -?éj; 12%)

e Ol &F AZheF £ AZtE FS2 |
Year 1 5002 KBT 5008+ KBT 0.5%
Year 2 2,0002t KBT 2,5002t KBT 2.5%
Year 3 5,0002t KBT 7,5002t KBT 7.5%
Year 5 191 KBT 29 KBT 20%

5.7|= ¥

5.1 SEX2 M= 2H

Polygon LIE{|3 MEH O| R

0%

=
=

M
=

of

St 72 bl

S $0.01 OJ2EQ| JHAH]

2 Ka| S5

m
=]

EW

2% 22 EfY

iz

ERC-20 &, =2 X|Z X|&

O|E{2|Z 2{I0[022 M =2 Hoty

KBT EZ2 ZEE (ERC-20)

-
solidity

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";

contract KBTToken is ERC20, ERC20Burnable, AccessControl {
bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
uint256 public constant MAX_SUPPLY = 1_000_000_000 * 10**18;

constructor() ERC20("K-Beauty Token", "KBT") {
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
_grantRole(MINTER_ROLE, msg.sender);

function mint(address to, uint256 amount) external onlyRole(MINTER_ROLE) {
require(totalSupply() + amount <= MAX_SUPPLY, "Exceeds max supply");
_mint(to, amount);

2|9/ & HEYE

-
solidity

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

contract RewardPool is AccessControl, ReentrancyGuard {
KBTToken public token;

mapping(address => uint256) public rewards;
mapping(address => bool) public partners;
mapping(address => uint8) public userTier; // 0 Silver, 1. Gold, 2. Platinum, 3. Diamond

// HEIE (basis points): 500 = 5%
uint256[4] public baseRates = [500, 700, 1000, 1200]; // Z/HE
uint256[4] public tierBonus = [0, 100, 200, 300], //&S&& 214

event RewardEarned(address indexed user, uint256 amount, address indexed partner);
event RewardClaimed(address indexed user, uint256 amount);

modifier onlyPartner() {
require(partnersimsg.sender], "Not a partner");

)

constructor(address _token) {
token = KBTToken(_token);
_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

function earnReward(

address user,

uint256 paymentAmount,

uint8 amountTier // 0. <1002}, 1. 100-5007F, 2. 500-10002}, 3. >10002F
) external onlyPartner {

uint256 rate = baseRates[amountTier] + tierBonus[userTier[user]];

uint256 reward = (paymentAmount * rate) / 10000;

rewards[user] += reward,

emit RewardEarned(user, reward, msg.sender);

function claimReward() external nonReentrant {
uint256 amount = rewards[msg.sender];
require(amount > 0, "No rewards to claim");

rewards[msg.sender] = 0;
token.transfer(msg.sender, amount);
emit RewardClaimed(msg.sender, amount);

}

function addPartner(address partner) external onlyRole(DEFAULT_ADMIN_ROLE) {
partners[partner] = true,

}

function updateUserTier(address user, uint8 tier) external onlyRole(DEFAULT_ADMIN_ROLE) {
require(tier <=3, "Invalid tier");
userTier[user] = tier;

——
——

// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;

contract VIPTier {
enum Tier { Silver, Gold, Platinum, Diamond }

struct Userlnfo {

Tier tier;

uint256 totalEarned,
uint256 treatmentCount;
uint256 lastActivity;

mapping(address => UserInfo) public users;

uint256[4] public tierThresholds = [

0, // Silver: 7}2] A/

50000e18, // Gold. 50,000 KBT
200000e18, // Platinum: 200,000 KBT
500000e18 // Diamond.- 500,000 KBT

function updateTier(address user) external {

Userlnfo storage info = users[user];

if (info.totalEarned >= tierThresholds[3] && info.treatmentCount >= 10) {
info.tier = Tier.Diamond,

} else if (info.totalEarned >= tierThresholds[2] && info.treatmentCount >=5) {
info.tier = Tier.Platinum;

} else if (info.totalEarned >= tierThresholds[1] && info.treatmentCount >= 2) {
info.tier = Tier.Gold,

}else {
info.tier = Tier.Silver;

function recordTreatment(address user, uint256 earnedAmount) external {

Userlnfo storage info = users[user],
info.totalEarned += earnedAmount;
info.treatmentCount += 1,

info.lastActivity = block.timestamp;

E3 AZLHEYE

-

solidity

// SPDX-License-Identifier: MIT
pragma solidity 70.8.19;

contract BurnMechanism {
KBTToken public token;

uint256 public totalBurned,
uint256 public constant EXPIRE_PERIOD = 730 days; // 24712

mapping(address => uint256) public lastActivity;
event TokensBurned(uint256 amount, string reason);

/) e £42 22} (50%)

function burnTransactionFee(uint256 feeAmount) external {
uint256 burnAmount = feeAmount / 2;
token.burn(burnAmount);
totalBurned += burnAmount;
emit TokensBurned(burnAmount, "Transaction Fee");

/e EF 42t
function burnExpiredTokens(address user) external {
require(
block.timestamp > lastActivity[user] + EXPIRE_PERIOD,
"Tokens not expired"
);
uint256 balance = token.balanceOf(user);
/) AHH PR E BtEIXF Mot B2
totalBurned += balance;
emit TokensBurned(balance, "Expired");

// E21'E dfold £zt

function quarterlyBuybackBurn(uint256 amount) external {
token.burn(amount);
totalBurned += amount;
emit TokensBurned(amount, "Quarterly Buyback");

}

mkdir kbt-token && cd kbt-token

npm init -y

npm install --save-dev hardhat @openzeppelin/contracts
npm install --save-dev @nomicfoundation/hardhat-toolbox
npx hardhat init

Hardhat & (hardhat.config.js)

-

javascript

require("@nomicfoundation/hardhat-toolbox");
require("dotenv").config();

module.exports = {
solidity: "0.8.19",
networks: {
mumbai: {
url: process.env.MUMBAI_RPC_URL,
accounts: [process.env.PRIVATE_KEY]
b
polygon: {
url: process.env.POLYGON_RPC_URL,
accounts: [process.env.PRIVATE_KEY]
}
I3
etherscan: {
apiKey: process.env.POLYGONSCAN_API_KEY
}
X

B A3 ZE (scripts/deploy.js)

p
javascript

const { ethers } = require("hardhat");

async function main() {
const [deployer] = await ethers.getSigners();
console.log("Deploying with:", deployer.address);

// 1. Deploy KBT Token

const KBT = await ethers.getContractFactory("KBTToken");
const kbt = await KBT.deploy();

await kbt.waitForDeployment();

console.log("KBT Token:", await kbt.getAddress());

// 2. Deploy RewardPool

const Pool = await ethers.getContractFactory("RewardPool");
const pool = await Pool.deploy(await kbt.getAddress());
await pool.waitForDeployment();
console.log("RewardPool:", await pool.getAddress());

// 3. Deploy VIPTier

const VIP = await ethers.getContractFactory("VIPTier");
const vip = await VIP.deploy();

await vip.waitForDeployment();

console.log("VIPTier:", await vip.getAddress());

// 4. Deploy BurnMechanism

const Burn = await ethers.getContractFactory("BurnMechanism");
const burn = await Burn.deploy(await kbt.getAddress());

await burn.waitForDeployment();

console.log("BurnMechanism:", await burn.getAddress());

// 5. Grant MINTER_ROLE to RewardPool

const MINTER_ROLE = await kbt.MINTER_ROLE();

await kbt.grantRole(MINTER_ROLE, await pool.getAddress());
console.log("MINTER_ROLE granted to RewardPool");

main().catch((error) => {
console.error(error);
process.exitCode = 1;

b

npx hardhat run scripts/deploy.js --network mumbai

npx hardhat run scripts/deploy.js --network polygon

npx hardhat verify --network polygon <CONTRACT_ADDRESS>

5.4 HolE AP| HE

ethers.js MH|A S2{A

p
javascript

const { ethers } = require("ethers");

class KBTService {
constructor() {
this.provider = new ethers.JsonRpcProvider(process.env.RPC_URL);
this.wallet = new ethers.Wallet(process.env.PRIVATE_KEY, this.provider);

this.token = new ethers.Contract(
process.env.TOKEN_ADDRESS,
require("./abis/KBTToken.json"),
this.wallet

);

this.pool = new ethers.Contract(
process.env.POOL_ADDRESS,
require("./abis/RewardPool.json"),
this.wallet
);
}

// T+l X3

async getBalance(address) {
const balance = await this.token.balanceOf(address);
return ethers.formatEther(balance);

}

VECIE-T
async earnReward(userAddress, paymentAmount, amountTier) {
const tx = await this.pool.earnReward(
userAddress,
ethers.parseEther(paymentAmount.toString()),
amountTier
);
return tx.wait();

}

// BIRIE =3

async getPendingReward(address) {
const reward = await this.pool.rewards(address);
return ethers.formatEther(reward);

}

/] A& E5 X3
async getUserTier(address) {

const tier = await this.pool.userTier(address);
const tiers = ["Silver", "Gold", "Platinum", "Diamond"];
return tiers[tier];

}
}

module.exports = KBTService,

Express API G{|A|

-

javascript

const express = require("express");
const KBTService = require("./services/KBTService");

const app = express();
const kbt = new KBTService();

app.use(express.json());

// T+ E3]
app.get("/api/balance/:address", async (req, res) => {
try {
const balance = await kbt.getBalance(req.params.address);
res.json({ balance, unit: "KBT" });
} catch (error) {
res.status(500).json({ error: error.message });

}
b;

//BIRE HE (IEL &)
app.post("/api/reward/earn", async (req, res) => {
try {
const { userAddress, paymentAmount, amountTier } = req.body;
const receipt = await kbt.earnReward(userAddress, paymentAmount, amountTier);
res.json({
success. true,
txHash: receipt.hash
b;
} catch (error) {
res.status(500).json({ error: error.message });
}
)

/] AMEA EH
app.get("/api/user/:address", async (req, res) => {
try {
const address = req.params.address;
const [balance, pending, tier] = await Promise.all([
kbt.getBalance(address),
kbt.getPendingReward(address),
kbt.getUserTier(address)
1);
res.json({ balance, pendingReward: pending, tier });
} catch (error) {
res.status(500).json({ error: error.message });

app.listen(3000, () => console.log("API Server running on :3000")),

5.5 Hot H|32|AE

o

=
=

X
o2
0x
=

OpenZeppelin AH2

HSEl 2to|ERE A8

(<

Y 24 Slither, Mythril &t
HE ZAL CertiK, Trail of Bits

ZE[AD XY

Gnosis Safe At

CIFSEESIN

Pausable 7131

THERY S

ReentrancyGuard &

Private Key 22|

ot

3 w4 22|

HI

6. AH|A 4 A

6.1 %% X

~

K-Beauty Token App
—— #& = (Home)

|
| M (2H), 29
|

— X2 Az L

—— [mEL (Partners)

| 72| 2E (HH/dget/=H/RE|/E3)

—— & 2IE (Rewards)

| &84 (X HE/A8)
| F——o|H oM

| L——VIP T &=

L— 8 m=2I (Profile)

—— AMEX HE

L IE 22 (H2E BA))

GOLD Member KBT |
Sarah Chen \

Total Balance |
125,000 KBT |
~ #12,500,000 |

Next Tier Progress 71% |

NSNS
50,000 KBT until PLATINUM |

2l¢= oM

r

@ oH ¥ 0|

M A As o +5,000 KBT
A7 3 &M (1/3) +15,000 KBT
M 2|5 =M +2,000 KBT

VIP &=t =

s

6.3 Ct=0f X|&

aly SMz9 H| 2
KR 2h= 0] 7= ;
cN B0 (7HA) 129 X|CH Al
p LEO 259 ILES
us S0 3=¢ ==Y
vN HEE 429 HEAIE
sa OFEfO4 5% VIP A&
7. 2™
HH 2EY
£ 712t FROIRYAE
Phasel 2025Q1-Q2 ADIE AEE Jdt 5 ZEAL MVP O JHe, mbQISd @l 53 Aot
Phase2 2025 Q3-Q4 HIE 21, 3l 30X 2, SH/E3 THELY
Phase 3 2026 Q1-Q2 A A, HY 1002, 3=/ 0HAIE 23t
Phase4 2026 Q3-Q4 Hef A &, SEOFAIE &, Z2|0|Y 7|5 EA|
Phase5 2027+ SEH &Y (Bi=, =2 MY AE), NFT 215 A, HEHY
Al OfUAE

Phase 1: Foundation (2025 Q1-Q2)

|>

Ot

o}
—

I-II

E
2t
VP ¢
r
|

H Z

ol
=
-

=R

A
EX
=

-

Phase 2: Beta Launch (2025 Q3-Q4)

ZIEZHE JH

(CertiK)

Ab
7
d H{ 532 MOU

5%
It fXl (5H)

2t

=

2t (i0S/Android)

HIE} AfH[A &

|>
S Fr;
o O

|
e o
In

F

30

or =

0
m rio

=
L
=

oot
oo Ok nT Ho
i

=

Im

i

> —

=

QIEAE|HIE &)

&Z/O0kA|OLL)

R
>
[
L
o
o
o
od
e
0x rot

Phase 3: Official Launch (2026 Q1-Q2)
HA| MH[A HE
s EH 1002
= Ot E A2l
L2 OIS el

AE|= A EXF QK (202€)

Phase 4: Scale (2026 Q3-Q4)

BN A AIE TS
U Y AT TS
NFT Al QIZA 23
HlEfEA 7 A
Al2I= B £x} R

>

n
e o
Ot

| (50218d)
8. &l & EX}
8.1Lg ol
qz olgl o
SEHQ H 2™ ADIE #HEME ZE20 AE
ELE MY 3% 2/ WL, API A

BD/OHIE 28 HH AR, o2l oHHE

ol
ar

orl

od

rh
Rl

F/Cs

O

7,000

PM

8.2 £X RX| A=l

AEXN

Al7I

2R

B0
Okl

, THed

I.

ol

MVP 74

2025 Q1

ANE

2026 Q1

204

AlE|= A

2027

509

Al2|= B

8.3 X3 A2 Al (AE)

H| &

or

100

40%

W&

2

1.25¢

25%

oEAIE

20%

80
Okl

or

0.5

10%

_°Ir__|

0.254

5%

oflei|]

9.1 F8 2|A3

B0
il

KA

3T

—_

Jod

ok
4r

oH

[l
Eal

ot= Y=ot A Het Jtsd

A 2|23

=
il

A1 2l AT

HMI| ZAL, HO HIRE| T2

EZ VXS

a|AS
b= A

[=

-
o

r

x})

o
=1
XI(AML) Al

VASP (ZFAFRFAFAL

v

T4

i

<l

3

10
wl

b

| KAl

HMIE(KYC) M

o

st
=

==

9 22

4 (Ch== 17 oo|g)

Nd

£l
o]

KO
od

5]

Y

ol

N

e

ol

(S

Y

o
e

Ko

ol

(S

9.3 HEo0|HA ZCH

or

100

M|

2, AML/KYC A|AHI 313

I.

Q|
—

i

—

HE X2 At HF-, VASP 4111 ZFH|
A

Ho| AS2t0[AL ZAF AR

VASP

2025 Q1
2025 Q2
2025 Q3
2026 Q1

CH]
A. 80 g2
g0 ol
KBT K-Beauty Token2| X}
H| A E EZS UH 7|12H0l 2N MIIXMO = X|Zots WAl
e ks HIAE! AIZF A CH7| 7] 2¢
Azt EZE @7HOE RENM HMAHS= A
HFO| &4 Al EOIM EZS it A
HEIA|D 2] MHEO| Hedt X|Z

B. &1 XI&

e OpenZeppelin Contracts: https://docs.openzeppelin.com

e Hardhat Documentation: https.//hardhat.org/docs

e Polygon Documentation: https.//wiki.polygon.technology

e ethers.js: https.//docs.ethers.org

C. A=A

e O|HY: contact@kbeautytoken.io

o HIAIO|E: www.kbeautytoken.io

o HigyT24: @KBeautyToken

o ES|E: @KBeautyToken

https://docs.openzeppelin.com/
https://hardhat.org/docs
https://wiki.polygon.technology/
https://docs.ethers.org/
mailto:contact@kbeautytoken.io
http://www.kbeautytoken.io/

ot EXts 52 9

{otAl7| HEZHL|CE,

K-Beauty Token Whitepaper v1.0 © 2025 K-Beauty Token. All rights reserved.

